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Abstract

A hierarchical multigrid algorithm for e�cient
steady solutions to the two-dimensional compress-
ible Navier-Stokes equations is developed and
demonstrated. The algorithm applies multigrid in
two ways: a Full Approximation Scheme (FAS) for a
nonlinear residual equation and a Correction Scheme
(CS) for a linearized defect correction implicit equa-
tion. Multigrid analyses which include the e�ect of
boundary conditions in one direction are used to es-
timate the convergence rate of the algorithm for a
model convection equation. Three alternating-line-
implicit algorithms are compared in terms of e�-
ciency. The analyses indicate that full multigrid
e�ciency is not attained in the general case; the
number of cycles to attain convergence is dependent
on the mesh density for high-frequency cross-stream
variations. However, the dependence is reasonably
small and fast convergence is eventually attained
for any given frequency with either the FAS or the
CS scheme alone. The paper summarizes numeri-
cal computations for which convergence has been at-
tained to within truncation error in a few multigrid
cycles for both inviscid and viscous 
ow simulations
on highly stretched meshes.
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Introduction

There has been an explosive growth in the use of
computational 
uid dynamics methods in the air-
craft design cycle over the past twenty-�ve years.
Recently there has been an emphasis on three-
dimensional Navier-Stokes simulations over com-
plex con�gurations; computations with 10{20 mil-
lion grid points are commonplace in focused appli-
cations. Even with the advent of more powerful com-
puters, algorithms that attain optimal convergence
rates are important to enabling these computations
to be accomplished in a reasonable wall-clock time.
An optimal method is one in which the arithmetic
operations to attain a solution to within truncation
error scale as O(N ), where N is the number of equa-
tions to be solved. Here, N is the number of �nite
volumes in the solution (NFV ) times the number of
conservation equations for each �nite volume (m);
i.e., N = mNFV . Generally, the total operation
count can be expressed as cN WMWU where WMWU

is the operation count corresponding to one mini-
mal work unit (MWU), i.e., the simplest possible
discretization of the equations to the order desired,
and c is a constant that di�erentiates one optimally
converging method from another.1 One method of
attaining optimal convergence rates is the multigrid
method. For elliptic equations, textbook e�ciencies,
which attain convergence in four to �ve residual eval-
uations, are possible.1,2 For hyperbolic equations,
O(N ) methods have been developed for the incom-
pressible Euler equations1,3,4 and for compressible
Euler equations using either the Full Approxima-
tion Scheme (FAS)5,6 or the defect correction (DC)
scheme.7{10 Multigrid solvers for viscous 
ows have
also been developed using these approaches.11{14

For the compressible Navier-Stokes equations,
textbook e�ciencies have not been attained for gen-
eral situations; the barriers which need to be over-
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come are addressed by Brandt.2 One of the prin-
cipal di�culties for complex-geometry applications
has been the need for very highly stretched grids to
resolve viscous 
ows near the body, with correspond-
ingly bad (and unintended) aspect ratios in other re-
gions. As an example, for a transonic wing with sep-
arated 
ow, the convergence rate for a widely used
multigrid method based on the FAS algorithm and
a multistage Runge-Kutta scheme13 requires on the
order of 1500 residual evaluations to attain conver-
gence of the lift to within one percent of the asymp-
totic value.15 Recently, improvements that use line-
implicit algorithms and semi-coarsening approaches
have been demonstrated for these applications.16{19

The purpose of this paper is to introduce an al-
gorithm that uses full-coarsening multigrid to accel-
erate convergence for viscous applications. All of
the basic elements of the method (multigrid, line
relaxation, upwind di�erencing, defect correction,
etc.) are well known. The algorithm applies the
FAS scheme to the nonlinear residual equations and
the correction scheme (CS) multigrid to the lin-
earized implicit equations. The methodology uses
alternating-line-implicit methods, although the es-
sential feature is the requirement for the solution to
a local block Jacobian matrix of size m at each grid
point. Thus the operation counts are O(NFVm

3)
and the computational work will scale as O(Nm2).
This is in contrast to the class of O(N ) algorithms
discussed by Brandt2 which decouple the equations
into separate scalar contributions, each of which is
treated optimally. The computations are supported
by analysis of convergence for a simple model con-
vection problem which shows many of the essential
features of the resulting algorithm. Comparisons
are made with the baseline solver implemented in
a widely used production code CFL3D.14 Because
the algorithm contains many elements of existing
methods, the methodology should be able to be in-
corporated into production codes and to accelerate
convergence for realistic applications.

Baseline Method

The steady-state results are obtained with a �nite-
volume approach based on an upwind-biased treat-
ment of the convective and pressure (Euler) terms
and central di�erencing for the viscous terms. The
method has been implemented in the CFL3D code,
used widely for large-scale computations and de-
scribed by Krist, et al.14 Only a few basic features
are cited here. The Riemann interface solver is the

ux-di�erence-splitting method and the �-scheme of
Van Leer20 is used for state-variable extrapolations.
Convergence to steady state is accelerated through

the Full MultiGrid (FMG) process, i.e., mesh se-
quencing and FAS multigrid with an approximately
factored implicit method as the relaxation scheme.
In the approximate factorization (AF) method, the
full matrix is replaced with a sequence of simpler
operators, each of which is a block tridiagonal or
pentadiagonal operator. However, the baseline AF
method is used almost exclusively in its diagonal
form.21 The multigrid method was demonstrated to
yield grid-independent convergence rates for Euler
simulations using the 
ux-vector splitting method
by Anderson, et al.5 The scheme has been used
routinely to accelerate the solution for viscous 
ow
using 
ux-vector splitting methods for the dissipa-
tion, with a spectral radius approximation to the
viscous Jacobians. The scheme is generally applied
as a W(1,0)5 FAS cycle using a Courant number of
5. For time-dependent simulations, because of the
severe time-step limitation of the method, subiter-
ations have been used to improve the accuracy and
stability of the implicit scheme, as in Rumsey, et
al.22

Multigrid Method

The present algorithm uses multigrid in two ways.
The �rst way is through an outer FAS multigrid
cycle to solve the second-order-accurate, nonlinear
steady-state residual operator. The second way is
through an inner iteration to solve the �rst-order-
accurate, linearized implicit operator. We describe
the multigrid methods for the two approaches be-
low by means of a two-grid approach, in which the
�ne grid is denoted by superscript h and the coarse
grid by superscript 2h. The coarser grid equations
are themselves solved with 
 cycles of the algorithm
applied recursively, where 
 = 1 corresponds to a
V-cycle and 
 = 2 to a W-cycle.

FAS Multigrid Cycle

The second-order-accurate steady-state residual
operator to be solved on the �nest grid is de�ned
as

Rh(Qh) = 0 (1)

where this equation represents the inviscid convec-
tive and pressure terms and the viscous di�usion and
heat transfer terms; Qh represents a vector of size
m at each of the NFV �nite-volumes in the domain.
After relaxation(s) of the �ne-grid operator to ob-
tain ~Qh, the coarse-grid equation at level 2h to be
solved for a correction to the �ne grid is

R2h(Q2h) = R2h(R ~Qh)�RRh( ~Qh) (2)
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where R denotes a restriction operator for transfer
of information to the coarser grid and the ~ super-
script denotes a most recently available value. The
correction from the coarser grids is prolonged to the
�ner grids as

~Qh  ~Qh + P(Q2h �R ~Qh) (3)

where P denotes a prolongation operator. The FAS
cycle described above is used extensively for cur-
rent Euler and Navier-Stokes solvers. The di�er-
ences in convergence between solvers lie chie
y in
their choice of relaxation (smoothing) scheme, such
as the approximate-factorization method5 or multi-
stage Runge-Kutta methods with implicit residual
smoothing.6,13

From the standpoint of a Newton method, the
�ne-grid correction can be written

[
@Rh

@Qh
] (� ~Qh) = �Rh( ~Qh) (4)

where the solution is updated as ~Qh  ~Qh+�~Qh.
The implicit equation is a large-banded matrix equa-
tion which is usually approximated for solution with
two approaches. The �rst approach is to use an ap-
proximate linearization of the residual; commonly,
the linearization of the residual uses �rst-order dis-
cretizations for the convective and pressure contri-
butions. For this approach, we can write the implicit
scheme as

[
@Rh

d

@Qh
] (� ~Qh) = �Rh

t ( ~Q
h) (5)

where the subscripts t and d denote some desired
\target" and \driver" schemes on the right and left
sides, respectively, of the equation. Note that this
equation is the defect correction form of the equa-
tions7,8,10 written in delta form for the update. This
\defect" in the implicit approximation leads to some
interesting consequences for the algorithm, as dis-
cussed subsequently, even if we make no further ap-
proximations.
The second approach is to solve the full matrix

equation iteratively or with a noniterative approxi-
mate factorization. For instance, Anderson, et al.11

used red-black block-matrix subiterations (usually
15) with point (m-block matrix inversions) relax-
ations to approximate the solution of the �ne-grid
implicit equation for unstructured grids. Thus the
e�cacy of the solver becomes a trade-o� between the

additional work of the subiterations and the reduced
approximations to the implicit equation.
If the implicit terms are di�erenced with �rst-

order-accurate upwind discretizations, the resulting
equations are block diagonally dominant. There-
fore, these equations can be solved e�ciently with
multigrid methods and standard relaxation meth-
ods used for solution of iterative equations, such as
Jacobi and Gauss-Seidel relaxation. With a second-
order-accurate discretization, the implicit equations
are only block diagonally dominant for a CFL num-
ber of unity. In either case, because the implicit
equations are linear, a CS multigrid method can be
used, as described below.

CS Multigrid Cycle

During the iterative process to solve the linear
implicit equation above, the second-order accurate
residual is held �xed, de�ned as bh = �Rh

t ( ~Q
h).

The equations are �rst relaxed on the �ne grid for
an approximate solution using a subiteration counter
l, (l = 0; 1; : : : ; Ns � 1), as

[
@Rh

d

@Qh
] [(�~Qh)l+1 � (� ~Qh)l]

= bh � [
@Rh

d

@Qh
](� ~Qh)l (6)

or equivalently,

[
@Rh

d

@Qh
] (�~Qh)l+1

= bh � [
@Rh

d

@Qh
�

@Rh
d

@Qh
](� ~Qh)l (7)

where the approximation to the implicit equation
on the left side is denoted with an overline notation
and (� ~Qh)0 = 0. The coarse grid also supplies a
correction to the linear system through solution of
the coarse grid correction equation, de�ned below.

@R2h
d

@Q2h
[��Q2h] = R[bh � [

@Rh
d

@Qh
](�~Qh)] (8)

where the latest value of (� ~Qh) is used on the right.
The correction to �Q2h from the coarser grid is pro-
longed to the �ner grids as

� ~Qh  �~Qh + P[��Q2h] (9)

All of the boundary conditions are completely lin-
earized and incorporated into the defect correction
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operator. In the CS multigrid, the coarser grid
implicit matrices are found by restricting the cor-
responding �ner grid implicit matrix contributions
with the result that the above linearization need only
be done for the �ne grid. The linearization includes
a time term which can be ramped from small val-
ues at impulsive starts from freestream conditions to
Courant numbers on the order of 300{500. The lin-
ear system is easier to solve if the time step is small,
and there is little to be gained in the second-order
residual convergence for Courant numbers beyond
these values for most 
ows.

Convergence of Defect Correction

The DC method can be written in terms of target
and driver operators Lt and Ld, respectively, on a
given grid h as

Ld(u
n+1) = Ld(u

n) � Lt(u
n) (10)

where the operators are designed to approximate the
actual partial di�erential operator to within an order
property

Ld = L + �d = L +O(h) (11)

Lt = L+ �t = L +O(h2) (12)

Now substituting from the above into Eq. (10), de�n-
ing u = uexact + e where L(uexact) = 0 and e is the
truncation error, then

(L+ �d)(e
n+1) = (L+ �d)(e

n)� L(en) + O(h2)

= �d(e
n) + O(h2) (13)

If we assume that (L + �d)
�1 = L�1 +O(h), then

en+1 = L�1�d(e
n) +O(h2) (14)

Telescoping the error terms from an arbitrary start-
ing error e0, then

L(en) = L(L�1�d)
n(e0) +O(h2) (15)

Because we need only converge the solution until
truncation error, L(en) = O(h2), we can catego-
rize the convergence of defect correction into three
regimes. The �rst regime corresponds to a mesh �ne

enough that the �rst-order scheme satis�es the or-
der property above, for which convergence would be
expected in just a few iterations. The second regime
corresponds to a mesh for which the second-order
scheme satis�es the order property but the �rst-
order scheme does not. It is this regime for which the
slowest convergence would be expected. The third
regime corresponds to a mesh coarse enough that
neither the �rst-order nor second-order scheme sat-
is�es the order property above; in this regime, con-
vergence to truncation error is nonetheless generally
rapid because the truncation errors are O(1).
These regimes can be classi�ed sharply for the �

family if we consider convection, Lu � ux + tuy,

�d(u) = �
h

2
[uxx + tuyy] +O(h2) (16)

�t(u) =
h2(�� 1=3)

4
[uxxx + tuyyy] +O(h3) (17)

Considering an exact solution with cross-stream fre-
quency !, corresponding to u = exp(i!(y� tx)), the
scheme attains its design accuracy when

j�dj = j
ht

2
!2(1 + t)j �

1

2
(18)

j�tj = j
h2t(� � 1=3)

4
!3(t2 � 1)j �

1

4
(19)

The inequalities on the right denote approximate
values observed in parametric calculations; for val-
ues satisfying the inequality, the scheme attains its
design accuracy|an asymptotic error reduction of
2p as the mesh is re�ned by a factor of two. Thus
the three regions can be classi�ed as below:

I : j�dj �
1
2

II : j�dj �
1
2 and j�tj �

1
4

III : j�tj �
1
4

The three regions denote the disparity between the
dissipation of the driver and target schemes and
are a restatement of the \survival distances" asso-
ciated with convection schemes derived by Brandt
and Yavneh4 in studies of the incompressible Navier-
Stokes equations, for standard schemes of the type
considered here as well as for hybrid schemes of im-
proved accuracy and convergence.

4
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Analysis of Convergence

Model Problem

To analyze convergence, we consider a model con-
vection equation corresponding to 
ow at some angle
of attack � to a unit square,

sx + t sy = 0; x 2 [0; 1]; y 2 [0; 1] (20)

where t = tan �. We consider a �nite-volume
scheme for Eq. (20) on a uniformCartesian grid with
spacings hx = 1=Nx and hy = 1=Ny in the x- and
y-directions, respectively, as

�hxs
h + t �hy s

h = 0 (21)

where shj;k is de�ned at the locations xj = (j�1=2)h
and yk = (k � 1=2)h for (j; k) = 1; 2; : : : ; (Nx; Ny).
Assuming periodicity of the solution in y, shj;k =

uhj exp(i !y yk) where !y is a given frequency in
the y-direction. The exact solution to Eq. (20) is
s(x; y) = f(�) where � = y � t x, corresponding in
this case to [uj]exact = exp(�i t !yxj). The set of
discrete frequencies !y realizable on a given grid can
be de�ned in terms of �y = !y hy as

�y =
2�l

Ny
; l = 0; 1; : : : ; Ny � 1 (22)

The numerical scheme can be written in matrix
notation as

(�hx + t �̂hy )u
h � Lh uh = �fh (23)

where uh is the vector of unknowns at the interior
points and fh is the vector associated with boundary
conditions imposed at the in
ow from the exact so-
lution. We consider either schemes of �rst-order ac-
curacy or one of the family of � schemes, � 2 [�1; 1].
As a shorthand notation, we refer to the �rst-order
scheme as � = �3. The matrices are

�hx =
1

hx

2
66666664

c3 c4 0 0 0 0
c2 c3 c4 0 0 0
c1 c2 c3 c4 0 0

0
.. .

. . .
. . .

. . . 0
0 0 c1 c2 c3 c4
0 0 0 ~c1 ~c2 ~c3

3
77777775

(24)

fh =
1

hx

2
666664

c2 exp(�i t !y x0) + c1 exp(�i t !y x�1)
c1 exp(�i t !y x0)

0
...
0

3
777775

(25)

�̂hy =
1

hy
[c1 exp (�i2�y) +

c2 exp (�i�y ) + c3 + c4 exp (i�y)]I (26)

where �̂hy is a diagonal matrix and �hx is lower trian-
gular for the fully upwind schemes, � � f�3;�1g.
The coe�cients for � 2 [�1; 1] are
fc1; c2; c3; c4g =

1
4
f1� �; 3�� 5; 3(1� �); 1 + �g

and for � = �3 are
fc1; c2; c3; c4g = f0; �1; 1; 0g

and ~c1�3 re
ect the incorporation of nonre
ecting
boundary conditions at the right for the upwind-
biased schemes, � 2 (�1; 1].

Defect Correction

The defect correction scheme to solve this equa-
tion can be written in delta form, �u = un+1 � un,
where the superscript n denotes a cycle (iteration)
counter, as

Lhd (�uh) = �Lht (u
h)
n
� fht n = 0; 1; : : : ; Nc � 1

(27)

De�ning the algebraic error eh as the di�erence be-
tween the exact discrete solution and the current
approximation, uh = uhexact + eh, then Eq. (27) can
be written

Lhd (�eh) = �Lht (e
h)
n

for n = 0; 1; : : : ;Nc � 1 (28)

Subiteration Scheme

An exact solution of this equation at each cycle
would correspond to an unfactored solver and is eas-
ily accomplished here with any of the fully-upwind
target schemes. However, as a model for the process
when we solve the coupled system of Euler/Navier-
Stokes equations, we consider an approximate solu-
tion of the driver operator, including the e�ect of
subiterations.

Lhd [(�eh)l+1 � (�eh)l] = �Lht (e
h)

n

�Lhd (�eh)l

for l = 0; 1; : : : ;Ns � 1 (29)

5
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where Ns = 1 corresponds to a noniterative approx-
imation, Eq. (28) is solved if the subiteration pro-
cess converges, and (�eh)0 is taken as zero at the
start of the process. In addition to the unfactored
scheme, we consider three approximations to Lhd , two
of which are an Alternating Line-Jacobi (ALJ) and
a spatially-factored Approximate Factorization (AF)
scheme (also see Appendices I-II)

LhjALJ = (
I

�t
+ �hx + t (�̂hy )

D)

(
I

�t
+ t (�̂hy )

D + (�hx )
D)�1

(
I

�t
+ t �̂hy + (�hx)

D) (30)

LhjAF = (
I

�t
+ �hx )(

I

�t
)�1(

I

�t
+ t �̂hy ) (31)

where superscript D denotes the diagonal contribu-
tion from the matrix arising from discretization in
x and y; for the di�erencing in y, the diagonal term
is the exp (0) contribution to the di�erence symbol,
Eq. (26). The third approximation to Lhd is the Al-
ternating Line Red-Black (ALRB) scheme (see Ap-
pendix III), which can be represented as

LhjALRB = (N�1
y +N�1

x �N
�1
y LhdN

�1
x )�1 (32)

where Ny and Nx represent sweeps through the
mesh in which the y and x lines are solved implicitly
in a red-black fashion, respectively. The equations
use an arti�cial time term de�ned in terms of the
CFL number as

I

�t
= (

I

hx
+ t

I

hy
)=CFL (33)

where the time term serves principally as a relax-
ation device for steady-state solutions. For all of the
analyses here, we use CFL = 1 for the ALJ and
the ALRB schemes.

Error Ampli�cation Matrices

It is usual to construct the ampli�cation of the
error for the red-black scheme or the multigrid
scheme considering two frequencies at a time, !y and
!y + �=hy. Thus the original error distribution

�
(eh1 )

0 exp(i!yy)
(eh2 )

0 exp(i(!y +
�
hy
)y)

�
(34)

becomes

�
(eh1 )

n exp(i!yy)
(eh2 )

n exp(i(!y +
�
hy
)y)

�
(35)

where

�
(eh1 )

n

(eh2 )
n

�
= G[n]

�
(eh1 )

0

(eh2 )
0

�
(36)

For single-grid relaxations, the matrix G is a diag-
onal matrix; o�-diagonal entries arise for red-black
relaxations and for intergrid transfers of informa-
tion. The error ampli�cation matrix per cycle for
a multigrid cycle with �1 relaxations before restric-
tion, �2 relaxations after prolongation, and an exact
solution on the coarser mesh 2h can be written as

G = S[�2] [I � P (L2h
t )�1RLht ]S

[�1] (37)

where

Lht =

�
Lht (�y) 0

0 Lht (�y + �)

�
(38)

R =
�
R cos(�y=2) R sin(�y=2)

�
(39)

P =

�
P (3 cos(�y=2) + cos(3�y=2))=4
P (3 sin(�y=2)� sin(3�y=2))=4

�
(40)

The restriction and prolongation matrices in x are
de�ned in Appendix IV. An alternate formulation of
the ampli�cation matrix is de�ned as

G� = R�GP� (41)

where R� and P � are higher order restriction and
prolongation operators, also de�ned in Appendix IV,
and the matrices R� and P� are constructed assum-
ing no aliasing errors occur in the transfer of infor-
mation in the periodic direction y.

R� =
�
R� 0

�
; P� =

�
P �

0

�

In this formulation, even for the single-grid scheme,
the ampli�cation matrix accounts for the transfer
of information between the coarser and �ner mesh.
The equation represents the prolongation of �ne grid
low-frequency errors on the coarser mesh to the �ne
mesh, their ampli�cation on the �ne mesh, and a

6
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subsequent restriction down to the coarser mesh.
The alternate formulation reduces the size of the ma-
trix eigenvalue problem to be solved from 2Nx�2Nx

toNx=2�Nx=2 and generally yields results which are
within 1 cycle of the standard formulation. Larger
di�erences arose when the maximum ampli�cations
occured near the �y=� = 0:5 boundary; these di�er-
ences have not been resolved, but in those instances
where di�erences do occur, the standard ampli�ca-
tion matrix is used.
The relaxation matrixS accounts for l � Ns subit-

erations as

S = �l�+ �[l] (42)

�l = �[l�1] +�[l�2] + : : :+ �[1] + I (43)

� = (Lhd )
�1(Lhd � L

h
t ) (44)

� = I� Lhd
�1
Lhd (45)

where the superscript [n] on a term denotes the term
raised to the nth power when there might be con-
fusion with the n or l superscript. The matrix cor-
responding to ampli�cation of the discrete residual
can be written as

H = LhtG (Lht )
�1 (46)

Error Bounds

The usual bounds considered for ampli�cation of
errors are the spectral norm and the L2 norm. The
spectral norms of G and H are the same because
they are related by a similarity transformation, al-
though we �nd in practice that the computation of
�(H) is subject to round-o� errors. For elliptic equa-
tions, Brandt23 has shown that these bounds are at-
tained for general domains using local mode (fully
periodic) analyses as long as the cycle is supple-
mented with additional (and negligibly small) pro-
cessing at and near the boundary. For hyperbolic
equations, the boundary has a more global in
u-
ence; in the case of convection, information prop-
agates from the boundary into the domain. For con-
vective equations, we �nd the spectral norm to be
not very useful, since it often is reached only after a
large number of iterations and may not be observed
in practice (see Appendix V). Thus we concentrate

on the L2 norm of either the error or the residual
and correlate the number of cycles to reduce them
by speci�ed amounts.

Stopping Criteria

By far, the most important bound is that for the
error, because we need only converge the numerical
scheme to within some measure of truncation error
on each grid. If we reduce the algebraic error on each
mesh by a factor f , the total error on subsequent
meshes can be expressed as uh = uexact + �h(1 + �)

� =
(2p � 1)

f
(1 +

2p

f
+ (

2p

f
)2 + : : : ) (47)

If we somewhat arbitrarily invoke that � = 1=8, so
that the algebraic error is 1=8th of the truncation
error, then the error reduction values f are 10 and
28 for the p = 1 (�rst-order) and p = 2 (second-
order) schemes, respectively. We apply this criteria
for the local error to the L2 error norms. In the
development of Eq. (47), we assume that the pro-
longation operator used in the interpolation of the
solution from the coarser mesh is nearly unity, con-
sistent with a high-order interpolation. If we com-
bine that with a high-order restriction operator, we
can enforce that a given �ne-grid algebraic error as
interpolated to the coarse mesh be reduced by the
factor f through examination of the G� ampli�ca-
tion matrix given above. In practice, the residual
is usually monitored, and grid-independent conver-
gence rates for the residual have been used as an
assessment of whether the multigrid is functioning
properly. Hence, we show some results for reduction
of the residual norms.

E�ciency Measure

In all cases, we show the number of updates of the
solution on the �ne grid, de�ned as

NU = NcNs(�1 + �2)

as the e�ciency measure. This is only approximate,
because it only accounts directly for the line inver-
sions done through either subiterations or additional
multigrid relaxations. The residual evaluations and
any work done on coarser grid are not taken into ac-
count. We can also de�ne an e�ective norm as the
norm per update of the solution, i.e.,

(jjG[Nc]jj2)effective = (jjG[Nc]jj2)
1=NU (48)

With the above models, there are a large number
of possible parametric studies of the type that have
been conducted extensively for elliptic equations; the
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general approach is extendable to systems of equa-
tions, three dimensions, and semi-coarsening multi-
grid schemes. We explore only a few parameters
below, focusing on the e�ect of convergence for the
second-order-accurate discretizations, including the
e�ects of relaxation scheme, subiterations, and FAS
multigrid on the convergence.

Convergence Results

Unfactored Scheme

The number of updates for convergence with the
unfactored scheme is considered an upper bound for
performance with defect correction. The direct so-
lution of the associated large-bandwidth equation is
not viable from an e�ciency standpoint, but with
the �rst-order implicit equations, convergence can
be attained in only a few multigrid cycles.7{9 For
the unfactored scheme, we show results with �t = 0
and �d = �3 for a typical case, � = 30deg, both
with and without multigrid. We examine the num-
ber of cycles to reach convergence of jjG�jj2 below
1=28, with �y over all possible discrete frequencies.
The results are shown in Table 1. There is a growth
in the number of cycles in either case because of
the defect correction approximation, i.e., the dispar-
ity between the target second-order and the driver
�rst-order scheme. The growth is, however, not ex-
plosive. The multigrid scheme is e�ective, even for
this unfactored implicit scheme, in reducing both the
error and the residual norms in comparison to the
single-grid scheme. The improvement approaches a
factor of two as the grid is re�ned. On the �nest
mesh, the number of cycles to convergence for the
lowest frequency considered and its associated har-
monic, �y=� = (�0:0156; 0:9844), was �ve for the
single-grid scheme and four for the multigrid scheme;
the slowest convergence occurred at frequencies of
�y=� = (�0:25; 0:75) and �y=� = (�0:343; 0:657),
respectively, for the two schemes. The average num-
ber of cycles over all the frequencies considered
was 15:6 and 8:8 for the single-grid and multigrid
schemes, respectively. Results obtained by moni-
toring convergence of jjHjj2 below 10�4 showed a
similar growth in the number of cycles for both sin-
gle and multigrid schemes, although the multigrid
showed only a 20-percent improvement in the num-
ber of cycles to attain this level of residual conver-
gence on the �nest mesh.
The above comparison represents a worst case sce-

nario for the bound, because all frequencies need to
be reduced by a constant amount. In fact, through
the FMG process, the troublesome frequencies may
have very small amplitudes in the starting solutions
for a given grid. Additionally, those frequencies

Nx Single Grid Multigrid
8 7 7
16 9 8
32 12 10
64 18 12
128 25 13

Table 1. Number of updates, NU , to reduce error
norm jjG�jj2� 1=28 for the unfactored DC scheme;
j�yj � 2�; �t = 0; �d = �3; � = 30deg

Nx Single Grid Multigrid j�dj j�tj
8 3 4 36 7
16 8 8 18 2
32 12 7 9 0.5
64 10 4 4 0.1
128 6 4 2 0.03
256 5 4 1 0.007

Table 2. Number of updates, NU , to reduce error
norm jjG�jj2� 1=28 for the unfactored DC scheme;
!y = 8�; �t = 0; �d = �3; � = 30deg

which are unresolved need only be reduced by less
than 1=28 to be within truncation error. Thus, in
Table 2, we show the number of updates considering
only a single frequency, corresponding to !y = 8�.
We also show � values from Eq. (18{19) in the table;
the Nx = Ny = 32 grid is the �rst grid that would
show close to the desired order property of a factor
of four reduction in the error as the grid is re�ned
by a factor of two in the x and y directions. The
�rst order scheme does not provide resolution over
the entire domain except on the very �nest mesh;
note the span of grids between accuracy of the �rst
order and second order operators. The asymptotic
convergence is quite good, as predicted by the de-
fect correction asymptotic analysis, because eventu-
ally the solution is resolved even with the �rst-order
driver scheme. In this limit, the multigrid is nei-
ther e�ective nor needed, as the single grid converges
the error and residual in a few cycles. The bound-
ary between regions II and III exhibits the slowest
behavior; the multigrid method improves the con-
vergence because the truncation error of the coarser
mesh target operator is better than the truncation
error of the �ne mesh driver operator. Although not
shown, results with the �t = �1 scheme were similar
to those above, although the number of cycles were
30-50 percent lower.

Comparisons with the AF Scheme

For the noniterative (Ns = 1) AF scheme, we �rst
show results with �d = �t = �3 for � = 45deg,
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Method Nx jjGjj2 jjHjj2 �(G)

SG 8 .91 .91 .5
SG 16 .97 .97 .5
SG 32 .99 .99 .5
SG 64 .99 .99 .5

MG 8 .67 .64 .57
MG 16 .82 .73 .57
MG 32 .98 .86 .58
MG 64 1.13 1.01 .58

Table 3. Norms after one update for the AF scheme;
j�yj � 2�; �t = �d = �3; � = 30deg

SG SG MG MG
Nx Pred. CFL3D Pred. CFL3D
8 30 28 18 16
16 44 40 18 17
32 68 61 19 17
64 112 101 19 17
128 � 175 � 17

Table 4. Number of updates, NU , to reduce jjHjj2
by 10�4 for the AF single-grid (SG) and multigrid
(MG) schemes; j�yj � 2�; �t = �d = �3; � = 45deg

Method Nx jjGjj2 jjHjj2 �(G)

SG 8 .96 .95 .79
SG 16 .99 .99 .79
SG 32 � 1 � 1 .80
SG 64 � 1 � 1 .80

MG 8 1.15 1.02 .79
MG 16 1.76 1.74 .81
MG 32 2.65 2.77 .81
MG 64 4.05 4.01 .82

Table 5. Norms after one update for the AF scheme;
j�yj � 2�; �t = 0; �d = �3; � = 30deg

SG SG MG MG
Nx Pred. CFL3D Pred. CFL3D
8 47 37(29) 40 37(26)
16 64 51(45) 44 41(30)
32 91 70(67) 50 43(39)
64 139 106(104) 64 51(49)
128 � 170(165) � 65(67)

Table 6. Number of updates, NU , to reduce jjHjj2 by
10�4 for the AF single grid (SG) and multigrid (MG)
schemes; j�yj � 2�; �t = 0; �d = �3; � = 30deg

both with and without multigrid. The CFL number
is selected as 1+ tan� because then �(G) = 0:5, in-
dependent of the mesh. The norms shown in Table 3
after one cycle (Nc = 1) indicate a spectral norm for
multigrid that is actually slightly higher than that
of the single grid. The L2 norms are greater than
unity for the multigrid scheme; the single-grid norms
are all below unity. The number of updates to reach
convergence of jjHjj2 below 10�4, with �y over all
possible discrete frequencies, is shown in Table 4;
several convergence calculations were not performed
for the highest grid density and are denoted with
a � in the Tables. Also shown are the results on
a square domain from the baseline CFL3D code14

with freestream values imposed at the boundaries
x = 0 and x = 1 and with periodicity imposed in
the y direction. A random perturbation was im-
posed in the interior to the density �eld only, so that
the full system of equations emulates the scalar con-
vection equation analyzed here. The Mach number
was 0.5 for the CFL3D computations but because
the residual equations recognize a contact discon-
tinuity exactly, the results are independent of the
Mach number; the only modi�cation required for
correspondence was to the time step, because the
system of equations bases the time step on the maxi-
mumeigenvalue of the full system. For the multigrid
computation in either case, the usual W(1,0) cycle
is used.

The �rst-order comparisons show that even
though the asymptotic rate is lower with the single-
grid scheme, the e�ective convergence is much bet-
ter for the multigrid scheme. The single-grid scheme
shows a clear dependence on the mesh size and the
multigrid rate is nearly grid-independent in both
the analysis and the computation. The predicted
bounds for the number of cycles required correlate
well with the CFL3D results.

Some calculations were made using a residual
tolerance of 13 orders of magnitude|an extreme
value|to illustrate the slow convergence with it-
eration of the e�ective error norm to its asymp-
totic value given by the spectral radius. With the
�d = �t = �3 scheme, the residual reduction be-
tween the last two cycles for the single-grid scheme
was 0.55, 0.59, 0.63, 0.68 for Nx = Ny = 8; 16; 32; 64,
respectively, as compared to the spectral norm of 0.5.

Next we consider the convergence of the second-
order scheme �t = 0 with the �rst-order implicit AF
scheme (�d = �3) for � = 30deg, both with and
without multigrid. The CFL number is again se-
lected as 1 + tan�. The initial norms are shown in
Table 5 and indicate a spectral norm for multigrid
that is again slightly higher than that of the sin-
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Nx AF ALJ ALRB
8 5 3 2
16 5 4 3
32 5 4 3
64 5 4 3

Table 7. Number of updates, NU , to reduce jjG�jj2
by 1=10 for multigrid (MG) with various relaxation
schemes; j�yj � 2�, � = �3; � = 30deg

gle grid. The predictions of the analysis with corre-
sponding results from CFL3D are shown in Table 6.
Two sets of computations are shown; the results in
parentheses are the results with freestream condi-
tions imposed along all boundaries. The single-grid
analyses and computations show a clear dependence
on the mesh size; as we expect, the corresponding
multigrid performance is not quite grid-independent,
because even the unfactored scheme shows such a
dependence. For both of these � values, the pre-
dicted bounds for the number of cycles required cor-
relate well with the numerical results. The number
of cycles without periodicity are generally lower than
with periodicity imposed, but approaches the same
number of cycles as the grid is re�ned. Although
not shown here, similar results were obtained with
the �t = �1 formulation; the only di�erences were
that the number of cycles was approximately 20 per-
cent lower with this scheme, as might be expected
because the dissipation levels are higher.

First-Order Multigrid Scheme

As a model for the convergence of the linear im-
plicit matrix equation, we consider the multigrid
scheme with �t = �d = �3 and with various relax-
ation schemes. Table 7 shows results corresponding
to a V(1,0) FAS multigrid cycle. Because this partic-
ular model is a linear equation with consistent target
and driver schemes, the FAS cycle is equivalent to
a CS cycle. It is clear that all of the schemes con-
verge rapidly and show little variation in the num-
ber of iterations to reach convergence as the mesh
is re�ned. Although not shown here, single-grid cal-
culations showed a clear doubling of the number of
iterations on each successive mesh re�nement.

Second-Order Multigrid Scheme

The convergence for the multigrid scheme with no
subiterations is shown in Table 8; the parameters
are the same as those for the results in Table 7 ex-
cept that �t = 0. There is some dependence of the
number of cycles to reach convergence, as expected,
because even if we eliminate the factorization errors,
there is dependence on the mesh density (Table 1).

Nx AF ALJ ALRB Unfactored
8 15 11 9 7
16 19 16 10 8
32 25 21 13 10
64 31 39 21 12

Table 8. Number of updates, NU , to reduce jjGjj2
by 1=28 for defect-correction multigrid (MG) with
various relaxation schemes; j�yj � 2�, �t = 0; �d =
�3; � = 30deg

Nx Ns=1 Ns=2 Ns=3 Ns=5

SG 8 12 18 24 40
SG 16 23 24 30 50
SG 32 30 32 42 65
SG 64 57 50 63 95

MG 8 11 16 21 35
MG 16 16 16 24 40
MG 32 21 24 30 50
MG 64 39 36 42 65

Table 9. Number of updates, NU , to reduce jjGjj2
by 1=28 for the ALJ single-grid (SG) and multigrid
(MG) schemes; j�yj � 2�; �t = 0; �d = �3; � =
30deg

The best performance is attained with the ALRB
scheme; it degrades little from the unfactored multi-
grid scheme on coarser meshes. As the mesh is re-
�ned, the AF scheme is more competitive because
its performance degrades less as the mesh is re�ned;
on the Nx = 64 mesh, it is actually more e�cient
than the ALJ scheme.

E�ect of Subiterations, (Ns � 1)

We consider the e�ect of subiterations for the
defect-correction scheme corresponding to �t = 0 for
� = 30deg; Tables 9{10 show results for both the
single-grid and the multigrid schemes with (�1 =
1; �2 = 0) and with the ALJ scheme. Regarding
the error reduction, there is some bene�t of a few
subiterations, especially as the mesh is re�ned. Too
many subiterations are clearly not e�cient when the
total number of updates, as used here, is considered.
These results are in qualitative agreement with prac-
tical calculations for the full systems of equations
because Ns = 3 provided good performance for the
results shown subsequently. In those situations, us-
ing 2 subiterations was optimal when stability was
maintained but was not robust for large time steps.
As shown in Table 10, for the residual reduction no
bene�t appears at all; the fastest residual reduction
occurs with Ns = 1, and the disparity with addi-
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tional subiterations grows as the mesh is re�ned.
These results are in qualitative agreement with the
single-grid local mode analysis of MacCormack and
Pulliam19 for the full system of equations using the
defect correction scheme with �t = 1=3; a few subit-
erations drove the spectral norms below unity.

E�ciency Comparisons

All of the relaxation/smoothers considered here
are amenable to vectorization and parallel imple-
mentation on computers because they are either Ja-
cobi, red-black, or factored schemes.

The operation counts for the ALJ and ALRB
methods are only slightly increased over current
block approximate-factorizationmethods. The over-
head is the requirement for additional iterations of
the linear system before updating the nonlinear sys-
tem. However, because the measured computer time
for the diagonalized line inversions of the AF scheme
for two-dimensional simulations is a factor of four
less than the corresponding block inversions, the
number of updates of the ALJ and ALRB schemes
must show an appreciable improvement over the AF
scheme to be viable. In general, this is not attained
for the isotropic cases considered here. Substantial
di�erences would be expected in cases of high grid
anisotropies, because the AF scheme is known not
to be optimal in its present form, as studied exten-
sively by Buelow, et al.24 The operation counts for
the block inversions can be reduced substantially by
saving the implicit Jacobians and LU decomposition
of the line inversions; the computational results in-
dicate the method is not sensitive to updating these
Jacobian entries. In the current implementation, for
example, the Jacobians and the LU decomposition
of the implicit line solutions are computed initially
and reused for each of the updates at a given mesh
resolution. For a V(2,1) FAS cycle with three subit-
erations, the block LU decompositons are done once
instead of six times. This saves about a factor of two
in computer time and makes the ALJ and ALRB
schemes competitive with the diagonalized AF for
isotropic cases, albeit at the cost of increased stor-
age. Greater re-use could be made at the cost of
additional storage.

Large-Scale Computations

Summarized below are the large-scale computa-
tions that have been made for several inviscid and
viscous 
ows, including viscous 
ow over a 
at plate
and the separated 
ow over an airfoil.

Nx Ns=1 Ns=3 Ns=5

SG 8 26 54 90
SG 16 49 66 105
SG 32 72 81 130
SG 64 82 108 170

MG 8 34 60 90
MG 16 60 66 100
MG 32 68 72 110
MG 64 70 90 140

Table 10. Number of updates, NU , to reduce jjHjj2
by 10�4 for the ALJ single-grid (SG) scheme; j�yj �
2�; �t = 0; �d = �3; � = 30deg

Bump in a Channel

Extensive calculations were made for the inviscid

ow over a 10-percent thick pro�le with a sin2 pro�le
in a channel at a Mach number of 0.5. A prediction
methodology based on two-grid local mode analysis
for a system of equations, similar to that of Mulder,9

showed that an asymptotic rate of 0.5 per V(1,0)
FAS cycle could be attained with the ALJ scheme
with either subiterations or CS multigrid applied to
the linear system. Numerical calculations con�rmed
this; systematic variations of the number of subit-
erations required indicated that three subiterations
without the CS were su�cient to allow large time
steps on the order of Courant numbers of 100{300.
Calculations made with the CS multigrid applied to
the linear system allowed larger time steps, but pro-
vided no overall advantage in convergence. Good
results were obtained with a V(2,1) FAS cycle with
three subiterations of the linear system; the conver-
gence rate corresponded to 0:51=3 = 0:8 per �ne-grid
update. Convergence to within 5 percent of trunca-
tion error, as measured by the computed drag, oc-
curred within two cycles (or equivalently, 9 �ne-grid
updates).
Ms. Carolyn Dear of Mississippi State University

provided some extensive benchmark evaluations of
the baseline AF solver during an intern period at
NASA Langley during the summer of 1998. The
results showed that the baseline solver in CFL3D
provided grid-independent convergence rates using

ux-vector splitting as the Riemann solver, but that
with 
ux-di�erence splitting, the results were grid
dependent. The remedy was to apply an entropy
�x to the steady residual equations so the minimum
eigenvalue of the 
ux Jacobian matrices did not fall
below 0.05 of the maximum value.� Interestingly,

�This is the only modi�cationmade to the steady residual
operator of the baseline solver CFL3D over the course of this
work.
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the ALJ formulation did not require this modi�ca-
tion to obtain grid-independent convergence. This
behavior is attributed to the system of equations and
could be studied by extending the methodology here
to systems. In comparisons of the two approaches
that used the FMG approach with this entropy �x
applied, the V(2,1) FAS cycle with 3 subiterations of
ALJ as the relaxation scheme was competitive with
but did not surpass the baseline solver.

NACA 0012 Airfoil

A series of airfoil calculations indicated results
similar to the inviscid simulations above. Again con-
vergence of lift and drag was obtained in a few cycles
of the ALJ V(2,1) FAS scheme with 3 subiterations.
However, the baseline solver was already adequate
to provide e�cient multigrid solutions.
For calculations from impulsive freestream initia-

tions, instead of through an FMG process, the use of
large time steps presented some di�culties; to over-
come these di�culties, the calculation was started
at moderate Courant numbers and ramped to large
time steps over a few cycles. For the impulsive start,
there was a decided improvement over the baseline
scheme of the ALRB (or ALJ) subiteration multigrid
scheme.

Flat Plate Boundary Layer

The simulation of viscous 
ow over a 
at plate
was done for a range of Reynolds numbers with
a computational domain extending from x = �1
to x = 2, with no-slip conditions imposed start-
ing at x = 0:5. Constant-pressure boundary con-
ditions were used downstream, along with speci-
�ed total-pressure, entropy, and velocity-direction
boundary conditions at in
ow. The aforementioned
two-grid local mode analysis indicated that, if the
linear system was solved either through subiteration
or CS multigrid, the same convergence rate of 0.5
per V(1,0) cycle could be attained. Computations
con�rmed the analysis; the calculation was insensi-
tive to the grid stretching, and the convergence rate
of the residual was better than 0.55 per V(1,0) cycle.
As the grid was stretched, however, it became

more di�cult to start the solution. Large time steps
could be taken, but the increase from small values
had to occur slowly. This di�culty was remedied by
applying an entropy �x to the implicit side of the
equations; the minimum eigenvalue was constrained
to be on the order of 0.1 of the maximumeigenvalue.
With this modi�cation, large time steps could be
taken from impulsive starts. When the CS multi-
grid was used for the implicit system, the conver-
gence rate of the linear system was better than 0.2
per W(2,1) CS cycle; thus one W(2,1) CS cycle was

quite su�cient to solve the linear system to a toler-
ance of approximately one order of magnitude. The
same overall e�ciency of the nonlinear residual con-
vergence could be attained if only 3 subiterations,
instead of the CS multigrid, were used for the linear
system.

In comparisons with the baseline scheme, a cal-
culation was made on a very highly stretched mesh
for laminar 
ow starting from freestream values. To
attain convergence of the integrated drag coe�cient,
the V(2,1) FAS cycle with 3 subiterations of either
the ALJ or the ALRB scheme showed a factor of ten
reduction in computer time over the baseline scheme
The local skin friction values on the plate converged
in just a few cycles with this scheme, consistent with
the �ndings of Koren12 using a CS multigrid defect
correction scheme. With an FMG cycle, the im-
provement was less|approximately a factor of �ve.
Calculations were made using an algebraic turbu-
lence model that showed a similar improvement over
the baseline scheme.

Airfoil with Laminar Separation

The convergence e�ciency for the 
ow over a
NACA 0012 airfoil at a Mach number of 0.8, � =
10deg, and a Reynolds number of 500 was investi-
gated for a series of meshes. For this simulation, the
region of separation extends over most of the air-
foil upper surface, from x=c = 0:35 to x=c = 0:97.
Generally, the lift and drag converged in only a few
V(2,1) FAS cycles on meshes varying from 65 � 25
to 641� 129. The grid was a C-type mesh; in order
to obtain grid-independent convergence, it was nec-
essary to construct the implicit lines in the wake so
that they spanned the wake. The asymptotic conver-
gence was virtually constant on all meshes; reduction
of the residual ten orders of magnitude was attained
in 40 V(2,1) FAS cycles, corresponding to 120 �ne-
grid updates using 3 subiterations of the ALRB or
the ALJ scheme for each relaxation.

Conclusions

A hierarchical multigrid algorithm for e�cient
steady solutions to the two-dimensional compress-
ible Navier-Stokes equations has been developed and
demonstrated. The general algorithm applies FAS
multigrid to a nonlinear target residual equation and
CS multigrid to a linearized defect correction im-
plicit equation. The computational work scales as
the total number of unknowns in the simulation, N ,
times the square of the number of equations at each
grid point, m, because solutions to block-tridiagonal
matrices of block size m are needed. Multigrid anal-
yses that include the e�ect of boundary conditions
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in one direction are used to estimate the convergence
rate of the algorithm for a model convection equa-
tion. Three alternating-line-implicit algorithms are
compared in terms of e�ciency. The analyses in-
dicate that full multigrid e�ciency is not attained
in the general case; the number of cycles to at-
tain convergence is dependent on the mesh for high-
frequency cross-stream variations. Of the three algo-
rithms investigated, the baseline AF solver provided
the overall best for isotropic grids, considering that
its cost per update with the diagonal version is a
factor of four cheaper than the full block inversions
associated with the ALJ and ALRB schemes. Nu-
merical simulations for a series of 
ows indicated
the ALJ and ALRB were only competitive with the
baseline scheme for inviscid 
ows but were clearly
superior for highly stretched viscous mesh simula-
tions. With a V(2,1) FAS cycle with 3 subiterations
of either the ALJ or ALRB schemes, convergence of
lift and drag to within truncation error occurred in
two multigrid cycles.
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Appendices

I Implementation of ALJ Scheme

The ALJ scheme is implemented with two sweeps
through the mesh, as below for the scalar convection
equation on mesh h.

(
I

�t
+ �x + t �̂Dy )d(�e�) = �Lt (e)

n (49)

(
I

�t
+ �Dx + t �̂y)d(�e) = �Lt (e)

n
� (�x � �Dx )d(�e�)

(50)

where the superscript D denotes the diagonal con-
tribution of the operator. Substituting from Eq(49)
for (�x)d(�e�) into Eq. (50), then

(
I

�t
+ �Dx + t �̂y)d(�e) = (

I

�t
+ �Dx + t �̂Dy )d(�e�)

Now substituting from Eq. (49) again, the scheme
can be written as an approximate factorization
scheme, referred to as the DDADI scheme and used
by MacCormack and Pulliam19

(
I

�t
+ �x + t �̂Dy )d(

I

�t
+ �Dx + t �̂Dy )

�1
d

(
I

�t
+ �Dx + t �̂y)d(�e�) = �Lt (e)

n

The scheme above is quite similar to the damped
ALJ scheme proposed by Mulder.9 In Mulder's
work, as in the relaxation methods used by Thomas,
Walters, and Van Leer,20 the solution and target
residuals are updated after each sweep. In the con-
text of the convection scheme studied here, the two
sweeps correspond to

(�x + 2 t �̂Dy )d(e
n+1 � en) = �Lt (e)

n (51)

(2 �Dx + t �̂y)d(e
n+2 � en+1) = �Lt (e)

n+1 (52)

Even though no time step explicitly occurs, the two
left sides of Eqs (51-52) are equivalent to the left
sides of Eqs (49-50) if, in the latter, we use a CFL
of (t + 1)=t and t + 1 on the x-implicit and y-
implicit sweeps, respectively. Thus, for non-grid-
aligned 
ows, the time steps are not much greater
than those of the AF scheme. Within such a corre-
spondence, if the target scheme is the same as the
implicit scheme, as for example with subiterations
or with a �rst-order-accurate scheme, these two ap-
proaches would be identical. In the general case,
the two schemes would behave di�erently because
of the above di�erences in the way the �rst sweep
in
uences the second sweep.

II Implementation of ALRB Scheme

The ALRB scheme is implemented very similarly
to the above scheme, except that the implicit lines
are updated in a red-black fashion, as below, assum-
ing that �d = �3.

(
I

�t
+ �x + t �̂Dy )d(�e�) =

�Lt (e)
n : Bx (53)

(
I

�t
+ �x + t �̂Dy )d(�e�) =

�Lt (e)
n
� ( t �̂y � t �̂Dy )(�e�) : Rx (54)
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(
I

�t
+ �Dx + t �̂y)d(�e��) =

�Lt (e)
n
� (�x � �Dx )d(�e�) : By (55)

(
I

�t
+ �Dx + t �̂y)d(�e��) =

�Lt (e)
n
� (�x � �Dx )d(�e��) : Ry (56)

where (Rx; Bx) and (Ry; By) refer to a sequencing
of the (x; y) lines in red-black fashion. Now Eqs (53)
and (54) can be written as

(Nx)d(�e�) = �Lt (e)
n (57)

where Nx denotes the lower triangular part of the
full driver operator I=�t + Ld after a resequencing
of the x = constant lines in a red-black fashion. Like-
wise the second set of equations, by adding and sub-
tracting the term Ld(�e�) to the right-hand sides,
can be written as

(Ny)d(�e�� ��e�) = �Lt (e)
n
� Ld(�e�) (58)

where Ny denotes the lower triangular part of the
full driver operator I=�t + Ld after a resequencing
of the y = constant lines in a red-black fashion. A
composite operator can then be written as

�e�� = �(N�1
y +N�1

x �N�1
y LdN

�1
x )Lt (e)

n

� �(Ld)
�1Lt (e)

n
(59)

III Ampli�cation Matrix for ALRB

The ampli�cation matrix for the step correspond-
ing to Eq. (53) can be written as

G1 =
1

2
C(GB1;GR1) (60)

where

C(G;H) �G+H+

�
G21 �H21 G22 �H22

G11 �H11 G12 �H12

�

(61)

and where GR1 = I,

GB1 = I �M�1 Lt (62)

and M is a diagonal matrix corresponding to the x-
implicit/y-Jacobi approximation, i.e., M = (I=�t+

�x + t �̂Dy )d along the diagonal entries. The ampli�-
cation matrix for the step corresponding to Eq. (54)
can be written as

G2 =
1

2
C(GB2;GR2) (63)

where GB2 = G1,

GR2 = (I�M�1Ld)G
1 +M�1(Ld � Lt) (64)

The ampli�cation matrix after the completion of the
y-implicit/x-RB sweep corresponding to Eqs. (55)
and (56) can be written as

G = (I �N�1
y Ld)G

2 +N�1
y (Ld � Lt) (65)

where Ny is the matrix corresponding to a y-
implicit/x-RB approximation to Ld. There is some
dependence of the iteration on the order of the points
taken; here, the �rst sweep is for the odd points,
which includes the point closest to the in
ow bound-
ary.

IV Restrictions and Prolongations

The restriction and prolongation matrices R and
P associated with the x-direction coarsening are of
dimensions Nx=2�Nx and Nx�Nx=2, respectively,
as below.

R =

2
66664

r1 r1 r2 0 0 0 0 0
0 r2 r1 r1 r2 0 0 0
: : : : : : : : : : : : : : : : : : : : : : : :
0 0 0 r2 r1 r1 r2 0
0 0 0 0 0 r2 r1 r1

3
77775

P =

2
6666666666664

p1 p0 0 0 0 0 0 0
p1 p2 p3 0 0 0 0 0
p2 p1 p0 0 0 0 0 0
p0 p1 p2 p3 0 0 0 0
p3 p2 p1 p0 0 0 0 0
: : : : : : : : : : : : : : : : : : : : : : : :
0 0 0 0 0 p0 p1 p2
0 0 0 0 0 p3 p2 p1
0 0 0 0 0 0 p0 p1

3
7777777777775

where for the usual prolongations and restrictions

fp0; p1; p2; p3g =
1

4
f0; 3; 1; 0g
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fr1; r2g =
1

2
f1; 0g

and for the higher-order prolongations and restric-
tions, denoted with asterisks,

fp0; p1; p2; p3g =
1

384
f�21; 315; 105;�5g

fr1; r2g =
1

6
f4;�1g

V A Curious Case of Norms

As an illustration of the di�erence between the L2

and spectral norms, the convergence for grid-aligned

ow, t = 0, is considered. With the � = �1 di�er-
encing scheme, Desideri and Hemker25 have shown
that the predicted asymptotic error decay rate is
very fast, �(G) � 0:5, but that the asymptotic rate is
achieved only after 2Nx cycles. This odd behavior is
associated with a de�cient set of eigenvectors of the
iteration matrix; the initial slow decay of the resid-
ual over the �rst 2Nx iterations is termed a pseudo-
convection phase by Desideri and Hemker.25 The L2

norms ofG andH remain close to unity for 2Nx cy-
cles and then fast convergence is attained. Because
the left and right side matrices are lower triangular,
it is straightforward to show that the asymptotic
spectral radius is determined by the ratio of the di-
agonal terms between the driver and target schemes,
i.e.,

�(G) = j1�
(�x)Dt
(�x)Dd

j

By scaling the left side implicitmatrix by 3=2, equiv-
alent to an underrelaxation26 of the right side resid-
ual by 2=3, the spectral norm becomes zero and the
L2 norms of bothG andH are 1=3. Now the conver-
gence is quite fast|so fast, in fact, that the asymp-
totic rate of zero, which is indeed achieved after Nx

cycles, is usually not seen before machine zero is
reached.
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